Expression of AE2 anion exchanger in mouse intestine.
نویسندگان
چکیده
We have characterized expression of anion exchanger 2 (AE2) mRNA and protein in the mouse intestine. AE2 mRNA abundance was higher in colon than in more proximal segments. AE2a mRNA was more abundant than AE2b mRNA throughout the intestine, and AE2c mRNA was expressed at very low levels. This AE2 mRNA pattern contrasted with that in mouse stomach, in which AE2c > AE2b > AE2a. AE2 polypeptide abundance as detected by immunoblot qualitatively paralleled that of mRNA, whereas AE2 immunostaining exhibited a more continuous decrease in intensity from colon to duodenum. AE2 polypeptide was more abundant in colonic surface cells than in crypts, whereas ileal crypts and villi exhibited similar AE2 abundance. AE2 was also observed in mural and vascular smooth muscle. Localization of AE2 epitopes was restricted to the basolateral membranes of epithelial cells throughout the intestine with three exceptions. Under mild fixation conditions, anti-AE2 amino acids (aa) 109-122 detected nonpolarized immunostaining of ileal enterocytes and of Paneth cell granule membranes. An epitope detected by anti-AE2 aa 1224-1237 was also localized to subapical regions of Brunner's gland ducts of duodenum and upper jejunum. These localization studies will aid in the interpretation of anion exchanger function measured in epithelial sheets, isolated cells, and membrane vesicles.
منابع مشابه
Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans
Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidificatio...
متن کاملBicarbonate secretion of mouse cholangiocytes involves Na(+)-HCO(3)(-) cotransport in addition to Na(+)-independent Cl(-)/HCO(3)(-) exchange.
UNLABELLED Bicarbonate secretion from cholangiocytes is required for appropriate adjustment of primary canalicular bile along the biliary tract. In human and rat cholangiocytes, bicarbonate secretion is mediated by anion exchanger (AE) 2, an electroneutral Na(+)-independent Cl(-)/HCO(3) (-) AE also involved in intracellular pH (pH(i)) regulation. In Ae2(a,b)-deficient mice, pH(i) is increased i...
متن کاملShared apical sorting of anion exchanger isoforms AE2a, AE2b1, and AE2b2 in primary hepatocytes.
AE2 (SLC4A2) is the member of the Na(+)-independent anion exchanger (AE) family putatively involved in the secretion of bicarbonate to bile. In humans, three variants of AE2 mRNA have been described: the full-length transcript AE2a (expressed from the upstream promoter in most tissues), and alternative transcripts AE2b(1) and AE2b(2) (driven from alternate promoter sequences in a tissue-restric...
متن کاملAE2 Cl-/HCO3- exchanger is required for normal cAMP-stimulated anion secretion in murine proximal colon.
Anion secretion by colonic epithelium is dependent on apical CFTR-mediated anion conductance and basolateral ion transport. In many tissues, the NKCC1 Na(+)-K(+)-2Cl(-) cotransporter mediates basolateral Cl(-) uptake. However, additional evidence suggests that the AE2 Cl(-)/HCO(3)(-) exchanger, when coupled with the NHE1 Na(+)/H(+) exchanger or a Na(+)-HCO(3)(-) cotransporter (NBC), contributes...
متن کاملFunctional activation of plasma membrane anion exchangers occurs in a pre-Golgi compartment
Folding and oligomerization of most plasma membrane glycoproteins, including those involved in ion transport, occur in the ER and are frequently required for their exit from this organelle. It is currently unknown, however, where or when in the biosynthetic pathway these proteins become functionally active. AE1 and AE2 are tissue-specific, plasma membrane anion transport proteins. Transient exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 277 2 شماره
صفحات -
تاریخ انتشار 1999